Durchbruch bei der Kernfusion

An der National Ignition Facility wurde ein spektakulärer Durchbruch bei der Kernfusion erzielt.

Es zwei Arten der Kernenergienutzung: die Kernspaltung, die in den derzeitigen Kernkraftwerken genutzt wird, und die Kernfusion. Bei der Kernspaltung werden Uranatome in kleinere Atome gespalten, um Energie freizusetzen. Die Kernfusion ist im Prinzip der umgekehrte Prozess: Leichte Atome werden in schwerere Atome umgewandelt. Das ist derselbe Vorgang, der im Plasmakern der Sonne stattfindet und unseren Planeten mit jeder Menge Energie versorgt. Wenn man diesen Fusionsprozess auf der Erde imitieren könnte, wäre das wohl die Lösung für all unsere Energieprobleme – die Nutzung der Kernfusion könnte eine praktisch unbegrenzte Energiequelle bedeuten. Sie würde keine langfristigen Abfälle produzieren, keine Treibhausgase ausstoßen und kein Risiko von Kernschmelzen mit sich bringen. Deswegen träumt man schon lange von Kernfusionskraftwerken, doch bisher war das eben nur ein Traum. Es gibt unter Kernfusionsforschern den alten Witz: Fusionsreaktoren sind nur noch 20 Jahre entfernt! Und werden es auch immer sein! Dabei ist Fusion selbst technisch schon möglich. Doch das Problem ist, dass man am Ende ein Netto-Energie-Plus erzielen muss. Den Start der Energieerzeugung bezeichnet man als Zündung. Der derzeitige Rekord wurde 1997 vom Joint European Torus in Großbritannien aufgestellt, wo 16 Megawatt Leistung durch Magnetfusion erzeugt wurden, aber 23 Megawatt zur Zündung erforderlich waren. Das heißt: Beim besten Ergebnis, das man bisher erzielt hat, hat man netto jede Menge Energie verloren. 

Fusionskammer der National Ignition Facility

Es gibt zwei Möglichkeiten, die Kernfusion zu erreichen: den magnetischen Einschluss, bei dem starke Magnete verwendet werden, um das Brennstoffplasma für sehr lange Zeiträume einzuschließen, und den Trägheitseinschluss, bei dem sehr starke und kurze Laserpulse verwendet werden, um den Brennstoff zu komprimieren und die Fusionsreaktion in Gang zu setzen. Bisher wurde die Magnetfusion bevorzugt, da die für die Trägheitsfusion erforderliche Technologie, insbesondere die Laser, nicht ausgereift genug waren. Die Trägheitsfusion erfordert nämlich wesentlich höhere Energiegewinne, um die von den Lasern verbrauchte Energie wieder auszugleichen. Jetzt aber hat man aber mit neuer Technik im Bereich des Trägheitseinschlusses einen bahnbrechenden Erfolg erzielt und zwar an der National Ignition Facility, kurz NIF, am Lawrence Livermore National Laboratory in den USA. 

Der Brennstoff für die Kernfusion befindet sich in winzigen Metallkapseln

Das NIF nutzt 192 Laserstrahlen, die über einen Zeitraum von einigen Nanosekunden insgesamt 1,9 Megajoule Energie erzeugen, um die Fusionsreaktion auszulösen. Der Brennstoff befindet sich in einer Metallkapsel von einigen Millimetern Durchmesser, die, wenn sie von den Lasern erhitzt wird, Röntgenstrahlen aussendet, die den Brennstoff erhitzen und komprimieren. Es handelt sich hier also wirklich um hochkomplizierte Prozesse, die sich auf einem winzigen Raum abspielen. Mit diesem Verfahren wurde am 8. August 2021 eine bahnbrechende Energieerzeugung von 1,3 Megajoule erreicht, der höchste Wert, der jemals mit dem Trägheitsverfahren gemessen wurde, also der Wert an erzeugter Energie, der der erforderlichen Zündungsenergie am nächsten kam. 

Stehen wir jetzt also kurz vor dem Kernfusionszeitalter? Unbegrenzte Energie und ungeahnter technischer Fortschritt? Leider noch nicht ganz. Denn obwohl das Ergebnis am NIF ein wahrer Durchbruch war, wurde auch hier nur 70 Prozent der investierten Energie am Ende aus dem Fusionsprozess herausbekommen. Es ist also noch ein weiter Weg bis wir wirklich Fusionsenergie im großen Stil erzeugen können. Dennoch gibt es gute Gründe für Optimismus. Fortschritte in der Computertechnik, künstlicher Intelligenz, supraleitende Magnete, 3-D-Druck, Materialwissenschaft und mehr dürften dazu beitragen, die Herausforderungen auf dem Weg zu einem funktionsfähigen Fusionsreaktor zu meistern. Der Durchbruch beim NIF ist zum Beispiel zum großen Teil auf bessere Computermodelle zurückzuführen.

Prototyp des Reaktors der Firma General Fusion

Hinzu kommt, dass viele Unternehmen aus der freien Wirtschaft sich immer mehr im Bereich Kernfusion engagieren. Alleine im letzten Jahr wurden rund 300 Millionen Dollar von privaten Unternehmen in die Kernfusionsforschung investiert und einige Projekte sind bereits in vollem Gange. General Fusion zum Beispiel, das unter anderem von Jeff Bezos finanziert wird, plant für nächstes Jahr den ersten Spatenstich für eine Kernfusionsanlage. Commonwealth Fusion Systems, das von Bill Gates unterstützt wird, rechnet sogar damit, bis zum Jahre 2025 einen Nettoenergiegewinn durch Kernfusion zu erzielen.  

Noch mehr Informationen zum Stand der Dinge im Bereich der Kernfusion erhaltet Ihr in diesem Video von Astro-Comics TV:

Kommentar verfassen

Trage deine Daten unten ein oder klicke ein Icon um dich einzuloggen:

WordPress.com-Logo

Du kommentierst mit Deinem WordPress.com-Konto. Abmelden /  Ändern )

Google Foto

Du kommentierst mit Deinem Google-Konto. Abmelden /  Ändern )

Twitter-Bild

Du kommentierst mit Deinem Twitter-Konto. Abmelden /  Ändern )

Facebook-Foto

Du kommentierst mit Deinem Facebook-Konto. Abmelden /  Ändern )

Verbinde mit %s